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ABSTRACT

This work explores the impacts of magnetogram projection effects on machine
learning-based solar flare forecasting models. Utilizing a methodology proposed by
Falconer et al. (2016), we correct for projection effects present in Georgia State Univer-
sity’s Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set. We
then train and run a support vector machine classifier on the corrected and uncorrected
data, comparing differences in performance. Additionally, we provide insight into sev-
eral other methodologies that mitigate projection effects, such as stacking ensemble
classifiers and active region location-informed models. Our analysis shows that data
corrections slightly increase both the true positive (correctly predicted flaring samples)
and false positive (non-flaring samples predicted as flaring) prediction rates, averaging
a few percent. Similarly, changes in performance metrics are minimal for the stacking
ensemble and location-based model. This suggests that a more complicated correc-
tion methodology may be needed to see improvements. It may also indicate inherent
limitations when using magnetogram data for flare forecasting.

Keywords: Space weather (2037), Solar flares (1496), Support vector machine (1936)

1. INTRODUCTION

Active region (AR) vector magnetograms are frequently used to forecast solar flares as they provide
insight into one of the only reservoirs capable of driving the flaring process: free magnetic energy.
By deriving a set of physics-based parameters from the data, we can produce a comprehensive set of
preflare features that can be easily integrated into machine learning (ML) models. However, as ARs
traverse farther from the solar disk center, the quality of magnetic field data degrades substantially.
Near the solar limb, AR vector magnetograms and their properties (magnetic flux, current helicity,
etc) suffer from systematic observational trends unrelated to the evolution of the AR itself, known
as projection effects. These trends appear due to line height formation effects, foreshortening of
magnetogram pixels, and increased noise which may make an AR appear stronger or weaker than
it truly is (Kitiashvili et al. 2015; Falconer et al. 2016). This complicates forecasting, especially for
events near the classification border, potentially introducing unnecessary false positive and negative
predictions. Correcting for these effects appears to be imperative in ensuring a well-performing
model, yet, as far as we know, no studies have explored multi-parameter corrections thoroughly. In
this work, our goal is to employ a methodology similar to that of Falconer et al. (2016), which was
originally used for unsigned magnetic flux corrections, to remove the projection effects for the AR
features present in Georgia State University’s Space Weather Analytics for Solar Flares benchmark
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data set (Angryk et al. 2020a,b), and examine the impacts these corrections may have on forecasting
performance. Additionally, we make use of two other correction methodologies, a stacking ensemble
classifier, and an active region location-informed model, to reduce the influence of projection effects.
Interestingly, as far as we are aware, these techniques have not been explored much in the literature.
We would like to note that ideally projection effect corrections should be applied directly to the
data source itself (the magnetograms), however, due to the significant amount of effort required for
computing the derived magnetogram features, this methodology is beneficial to consider.
The remaining sections of this work are organized as follows: Section 2 highlights the data used in

our predictions. Section 3 describes the methodology used to correct the projection effects. Finally,
Sections 4 and 4.3 detail our results and conclusions from this work.

2. DATA

Georgia State’s Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set (Angryk
et al. 2020a,b) is an ML-ready compilation of Solar Dynamics Observatory Helioseismic and Magnetic
Imager (SDO HMI, Scherrer et al. 2012) AR vector magnetogram parameter time series spanning
part of Solar Cycle 24 (May 2010 - August 2018). Each file contains 12 hours’ worth of data at
a 12-minute cadence, with twenty-four physics-based parameters calculated at each timestamp (see
Table 1). Every file is labeled based on the strongest flaring instance to occur in the following 24
hours, with M- and X-class flares deemed as positive (or flaring) events, while weaker B-, C-class, and
completely flare quiet instances are considered negative (or non-flaring) events. SWAN-SF is divided
into five temporally segmented partitions, each containing approximately the same number of M- and
X-class flares (Ahmadzadeh et al. 2021). This allows for quick and efficient training/testing of ML
classifiers, which we take advantage of in this work. Figure 1 depicts the distribution of flaring/non-
flaring classes within each partition. If the reader would like to learn more about how SWAN-SF was
constructed, please see Angryk et al. (2020b).
We want to make clear that our primary focus in this work is to study the impacts of projection

effects on flare forecasting, rather than produce the best-performing classifier. Thus, to simplify and
accelerate our training/testing process, we employ a feature-vector-based (contrary to a time series-
based) forecaster, which requires us to reduce each multivariate time series file to a single data point.
To achieve this, we calculate the descriptive statistics for each of the twenty-four magnetogram
parameters in a given 12 hr file. This includes the mean, median, standard deviation, variance,
maximum, minimum, skewness, and kurtosis. Then, to capture aspects pertinent to the evolution
of the time series, we record the last value in the file, the mean of the gradient derivative, and the
standard deviation of the gradient derivative. For files with missing data, we linearly interpolated
beforehand. This method saves us significant time, reducing each file from 60 timestamps by 24
parameters (or 1440 dimensions) to 1 timestamp by 264 parameters, i.e., 11 parameters for each of
the 24 magnetogram parameters.

3. METHODOLOGY

In this work, we follow a similar methodology introduced by Falconer et al. (2016) to correct for
projection effects. By normalizing the magnetic field data for a given AR to the value near the central
meridian (where projection effects are minimal), combining the results across many different ARs,
and employing a polynomial fit, we create a curve that describes the severity of the projection effects
as a function of heliocentric angle (θ, the angle between an AR’s line-of-sight and surface normal). For
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Figure 1. The flare class distribution for each partition within the Space Weather Analytics for Solar Flares
benchmark data set. Bars are color-coded by the flaring class: Flare quiet (blue), B- (orange), C- (teal), M-
(green), and X-class (pink).

any new AR, we can then remove the projection effects by dividing the data by the polynomial value
at the AR’s current heliocentric angle, rescaling the data back to unity (or the estimated unprojected
value). In the following sections, we will provide details on how we selected our “benchmark” ARs for
modeling the polynomials (see Section 3.1), how we generated the polynomial fits for each correction
(see Section 3.2), how we trained our ML models (see Section 3.3), and the performance metrics we
used to analyze our results (see Section 3.4).

3.1. Active Region Selection

The first step in the correction process is to identify the “benchmark” ARs that will be used to
model the average projection effects across the solar disk. Ideally, these ARs should demonstrate
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Parameter Description Formula

ABSNJZH Absolute value of the net current helicity in G2/m Hcabs ∝ |
∑

Bz · Jz |

EPSX Sum of X-component of normalized Lorentz force δFx ∝
∑

BxBz∑
B2

EPSY Sum of Y-component of normalized Lorentz force δFy ∝ −
∑

ByBz∑
B2

EPSZ Sum of Z-component of normalized Lorentz force δFz ∝
∑

(B2
x+B2

y−B2
z)∑

B2

MEANALP Mean twist parameter αtotal ∝
∑

Jz ·Bz∑
B2

z

MEANGAM Mean inclination angle γ = 1
N

∑
arctan(Bh

Bz
)

MEANGBH Mean value of the horizontal field gradient ∇Bh = 1
N

∑√
( ∂Bh

∂x
+ ∂Bh

∂y
)

MEANGBT Mean value of the total field gradient |∇Btot| = 1
N

∑√
( ∂B
∂x

+ ∂B
∂y

)

MEANGBZ Mean value of the vertical field gradient ∇Bz = 1
N

∑√
( ∂Bz

∂x
+ ∂Bz

∂y
)

MEANJZD Mean vertical current density Jz ∝ 1
N

∑
(
∂By

∂x
− ∂Bx

∂y
)

MEANJZH Mean current helicity Hc ∝ 1
N

∑
Bz · Jz

MEANPOT Mean photospheric excess magnetic energy density ρ ∝ 1
N

∑
(BObs −BPot)2

MEANSHR Mean shear angle Γ = 1
N

∑
arccos

(
BObs·BPot

|BObs||BPot|

)
R VALUE Total unsigned flux around high gradient polarity inversion lines using the Blos component Φ =

∑
|Blos| · dA (within R mask)

SAVNCPP Sum of the absolute value of the net current per polarity Jzsum ∝ |
∑B+

z JzdA|+ |
∑B−

z JzdA|

SHRGT45 Area with shear angle greater than 45 degrees Area with Shear >45◦

Total Area

TOTBSQ Total magnitude of Lorentz force F ∝
∑

B2

TOTFX Sum of X-component of Lorentz force Fx ∝
∑

BxBzdA

TOTFY Sum of Y-component of Lorentz force Fy ∝
∑

ByBzdA

TOTFZ Sum of Z-component of Lorentz force Fz ∝
∑

(B2
x +B2

y −B2
z)dA

TOTPOT Total photospheric magnetic energy density ρtot ∝
∑

(
−→
B

Obs −−→
B

Pot
)2dA

TOTUSJH Total unsigned current helicity Hctotal ∝
∑

Bz · Jz

TOTUSJZ Total unsigned vertical current Jztotal =
∑

|Jz |dA

USFLUX Total unsigned flux in Maxwells Φ =
∑

|Bz |dA

Table 1. The derived magnetic field parameters in the Space Weather Analytics for Solar Flares benchmark data
set. These parameters have been curated by Bobra & Couvidat (2015). This table has been adapted from Angryk
et al. (2020b).

minimal variations in their strength over their lifetimes. We can ensure this by analyzing an AR’s
unsigned magnetic flux profiles, only selecting those that show a highly symmetric evolution across
the solar meridian. This guarantees that any observed growths/decays in the data are (mostly) due
to the projection effects themselves, rather than any intrinsic evolution of the AR that may occur.
We invoke the following methodology to quantitatively analyze the symmetry of the flux profile for a



5

Figure 2. (Left) The normalized unsigned magnetic flux for HARP 3843 versus its heliocentric angle (θ)
in degrees. The data in grey are normalized to the max unsigned magnetic flux. A spline is fit through the
data in the eastern hemisphere (left of 0◦) and the western hemisphere (right of 0◦) in maroon. Notice the
highly symmetric nature of the data across the traversal. This indicates that the flux variations we observe
are mostly dominated by projection effects. (Right) In maroon, the unsigned magnetic flux spline from the
western hemisphere is plotted versus the unsigned magnetic flux spline from the eastern hemisphere (at the
same heliocentric angle). A one-to-one line is shown in green. The root mean squared value between the fit
data and one-to-one line is shown in the top right.

given AR. First, we down-select ARs from the 4098 present in SWAN-SF based on the criterion that
their data spans most of the solar disk. Since we will only be making forecasts for ARs with θs out to
70◦, we select ARs that have data within longitudes and θs of 73◦ (a 3◦ buffer is included to ensure
a good final polynomial fit). We also want the ARs to pass relatively close to the disk center, so we
include an additional criterion that data must exist within θs of 30◦. From here, we take each of the
398 down-sampled ARs and fit two (one for each hemisphere) 5th-degree splines through the unsigned
magnetic flux normalized to the maximum value along the traversal, as a function of the θ. We then
take the data from the fit of the western hemisphere and plot it against the data from the eastern
hemisphere (at the same θ). We also include a one-to-one line that depicts a perfectly symmetric
evolution (see Figure 2). By calculating the root mean squared (RMS) error between the fit data and
the one-to-one line, we can quantify how symmetric the flux evolution is across hemispheres. A low
RMS should correspond to a good one-to-one fit. Through visual inspection, we settled on an RMS
cutoff of <0.3 for our final sample of ARs. This ensures that we have a sufficient number of ARs to
work with while removing the egregiously asymmetric ARs. In the end, we were left with 260 ARs.

3.2. Fitting and Applying the Corrective Polynomials

Now that we have selected our “benchmark” ARs, we can begin generating the correction poly-
nomials for each magnetic field parameter in Table 1. Our approach consists of two stages. First,
we establish a “prefit” polynomial that will calibrate the final fit. This “prefit” curve is constructed
using only ARs that pass within 10◦ of the solar meridian. For each of these ARs, we normalize the
data based on the mean value of the observed magnetic field parameter between the AR’s minimum
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θ and the minimum plus 3◦. This ensures that near 0◦, where we expect minimal projection effects,
the correction is set to unity. Then, the rescaled data beyond this θ range models the strength of the
projection effects. Combining all of our “prefit” normalized AR data, we can apply a bootstrapping
technique to generate a fit with uncertainties. This method involves resampling our “prefit” AR data
500 times, with replacement. More specifically, say we had x number of ARs within our “prefit”
data. Within a single bootstrapped sample, x random AR selections are made from our original pool
with the possibility of selecting the same region multiple times. We repeat this process 500 times
and apply a 7th-degree polynomial fit through the data of each of our bootstrapped samples. This
fit is defined as follows:

y = 1 + β0θ + β1θ
2 + β2θ

3 + β4θ
5 + β5θ

6 + β6θ
7 (1)

where βn are constants, θ is the observed heliocentric angle, and y is the correction factor. The
average bootstrapped fit is then used as the final correction polynomial for the “prefit” data. The
reason we create “prefit” polynomials first is that ARs with minimum θs greater than 10◦ should
not necessarily be normalized to unity. In principle, these ARs will already have some degradation
due to projection effects. Thus, we normalize their data to the average “prefit” polynomial value
between the minimum θ and the minimum plus 3◦. Once this is done, we re-run the bootstrapping
method, averaging the curves to achieve our final fit for each magnetic field parameter. Having
these polynomials then allows us to generate our corrected SWAN-SF data set. By iterating through
each time series file, rescaling the 24 magnetogram parameters by their corrective factors at the
appropriate θ, and recalculating the descriptive statistics, we should largely remove any projection
effects within the data.
We want to note that because some parameters are signed (TOTFX/Y/Z, ESPX/Y/Z, MEANJZH,

MEANJZD, MEANALP), we took the absolute value of these features when generating our polynomial
fits. The absolute value was not used during forecasting. Additionally, the R VALUE feature is depen-
dent on the polarity inversion line (PIL) of the AR. Since not all ARs have a distinct PIL, some time
series may contain R VALUE = 0, which may interfere with our fit. Thus, data points where R VALUE

= 0 were removed during fitting.
Figure 3 highlights the results of the fitting process, while Table 2 provides the constants for each

fit. The grey dots show the normalized data for the 260 “benchmark” ARs, the solid maroon line is
the average fit of the bootstrapped fits in orange, the dotted maroon line shows the median absolute
deviation from the fit, and the black dashed line emphasizes where the correction factor is 1. From
the figure, we see that each parameter is influenced differently by projection effects, with correction
factors ranging from as low as 0.5 (MEANJZD) up to 25 (TOTFX) at certain θs.
The shape of the polynomial tends to land within two categories, either a gradual fall-off at larger

θs or a peak occurring between 30◦ and 70◦. Of course, there are a few oddball parameters such
as MEANALP, MEANJZH, R VALUE, and TOTFY that do not fall into either of these categories. Those
that are associated with the hump are directly related to the radial field component of the magnetic
field as well as the masking area (dA) of the AR (eg. USFLUX), while those with a gradual drop-off
tend to be directly related to the horizontal component of the magnetic field (eg. MEANGBH). As
ARs move towards the limb, the radial field component (Bz in the local Cartesian coordinate system
rotating with the AR) increasingly influences the transversal field measurements (perpendicular to
the line of sight), while the horizontal field components (Bx,By) begin to dominate the line of sight
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Figure 3. The correction polynomials for each of the 24 derived magnetic field parameters measured in
normalized units as a function of heliocentric angle (θ). The solid maroon line represents the average fit
from the bootstrapped fits in orange for the data in grey. The dashed maroon lines highlight the median
absolute deviation of the data above and below the polynomial fit. The black dashed-dotted line emphasizes
the point where the correction factor is 1. Please note that often the bootstrapped fits (orange) are relatively
similar to the average fit (maroon), thus the curves can occasionally be hard to identify (e.g. MEANSHR).

measurements. In the HMI magnetograms, the line of sight component of the field has an error of
5-10 G, while the transverse field noise is on the order of 100 G (Liu et al. 2012; Hoeksema et al. 2014;
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Falconer et al. 2016). Consequently, this means near the limb, the increased noise and contribution
of the transversal component will expand the ARs masking region. This synthetically increases the
features correlated to Bz and dA. For the parameters dependent on the horizontal field components,
the drop-off likely occurs due to a combination of foreshortening and an increased contribution of
the line of sight observation (which has less noise) when making horizontal field measurements. The
reduced noise near the limb should decrease the average measurements of the horizontal component,
compared to those made near the central meridian, where noise is high.
Finally, when analyzing the goodness of fit, we find that it varies widely depending on the parameter.

For example, MEANGAM, MEANBH, MEANGBT, MEANGBZ, and MEANSHR all have relatively clear trends, while
parameters such as ABSNJZH, EPSY, MEANALP, MEANJZD, MEANJZH, SAVNCPP, and TOTFY show no obvious
fit and are quite scattered.

Parameter β0 β1 β2 β3 β4 β5 β6

ABSNJZH -3.780e-04 -1.992e-04 2.772e-04 -1.732e-05 4.523e-07 -5.451e-09 2.473e-11

EPSX 2.147e-01 -5.051e-02 5.401e-03 -1.911e-04 3.148e-06 -2.519e-08 7.959e-11

EPSY -9.715e-03 2.231e-03 -1.492e-04 4.212e-06 -6.138e-08 4.579e-10 -1.367e-12

EPSZ -1.955e-02 2.224e-03 1.086e-04 -8.265e-06 2.109e-07 -2.428e-09 1.045e-11

MEANALP 2.747e-03 5.508e-04 3.417e-05 -3.986e-06 1.217e-07 -1.557e-09 7.261e-12

MEANGAM 2.700e-03 -4.375e-04 4.165e-06 2.204e-07 -7.620e-09 9.435e-11 -4.099e-13

MEANGBH 2.332e-03 -4.772e-04 2.407e-05 -9.089e-07 1.768e-08 -1.620e-10 5.655e-13

MEANGBT 1.657e-03 -5.667e-04 5.370e-05 -2.051e-06 3.661e-08 -3.163e-10 1.076e-12

MEANGBZ 2.270e-03 -7.084e-04 6.245e-05 -2.311e-06 4.112e-08 -3.602e-10 1.260e-12

MEANJZD 1.063e-02 -2.389e-03 1.861e-04 -8.809e-06 2.121e-07 -2.411e-09 1.036e-11

MEANJZH 1.025e-02 -1.240e-03 1.574e-04 -8.281e-06 2.030e-07 -2.343e-09 1.029e-11

MEANPOT 4.287e-02 -8.872e-03 6.295e-04 -2.167e-05 3.868e-07 -3.458e-09 1.229e-11

MEANSHR -3.996e-04 2.581e-04 -3.342e-05 1.280e-06 -2.422e-08 2.267e-10 -8.214e-13

R VALUE 9.112e-03 -2.176e-03 1.942e-04 -6.922e-06 1.240e-07 -1.117e-09 4.032e-12

SAVNCPP -2.819e-02 4.946e-03 -1.587e-04 -9.472e-07 1.276e-07 -2.131e-09 1.108e-11

SHRGT45 -1.564e-02 4.008e-03 -3.019e-04 1.006e-05 -1.762e-07 1.584e-09 -5.730e-12

TOTBSQ -1.975e-02 3.703e-03 -1.876e-04 4.892e-06 -6.384e-08 3.555e-10 -4.791e-13

TOTFX 2.451e-01 -5.886e-02 6.093e-03 -2.029e-04 3.164e-06 -2.440e-08 7.576e-11

TOTFY -2.346e-02 4.590e-03 -2.393e-04 5.621e-06 -6.687e-08 3.742e-10 -6.807e-13

TOTFZ -2.945e-02 3.581e-03 1.099e-04 -1.064e-05 3.034e-07 -3.800e-09 1.740e-11

TOTPOT 2.206e-02 -5.202e-03 5.040e-04 -1.980e-05 3.837e-07 -3.693e-09 1.415e-11

TOTUSJH -1.6339e-02 2.592e-03 -5.808e-05 -5.554e-07 4.066e-08 -6.017e-10 2.950e-12

TOTUSJZ -1.901e-02 3.218e-03 -9.366e-05 4.323e-07 2.494e-08 -4.716e-10 2.530e-12

USFLUX -1.963e-02 3.462e-03 -1.261e-04 2.062e-06 -1.715e-09 -3.156e-10 2.322e-12

Table 2. The constants for each 7th-degree polynomial fit for each magnetic field parameter.
The fits are defined mathematically in the following way: y = 1 + β0θ + β1θ

2 + β2θ
3 + β4θ

5 +
β5θ

6+β6θ
7, where βn are constants, θ is the observed heliocentric angle, and y is the correction

factor
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3.3. Machine Learning Models, Feature Selection, and Hyperparameter Tuning

Machine learning (ML) has emerged as a powerful tool in heliophysics for forecasting solar transient
events. In this study, we apply ML techniques to predict the occurrence of M- or X-class flares from
an AR within a subsequent 24 hr time window. Known as a binary classification task, we provide
positive (flare) and negative (no flare) predictions for individual point-in-time data. In ML, there
are three components to every forecasting model: a training (plus validation) data set, a testing data
set, and the algorithm itself, which generally includes hyperparameters, and occasionally weights or
biases (e.g., see Badillo et al. 2020 for more details). In this work, we use every possible combination
of the temporally segmented partitions of SWAN-SF to train/test our algorithm (1/2, 1/3, 1/4, 1/5,
2/1, etc.). This was done for both corrected and uncorrected data. To address the problem of
differing scales within the derived magnetogram parameters, we renormalize each training dataset
feature distribution to a mean of 0 and a variance of 1. This transformation is calculated by using
the following formula: z = x−u

s
, where z is the transformed value, x is the input value, u is the mean

of the training samples, and s is the standard deviation of the training samples. We then apply this
exact transformation to the testing dataset, with u and s being the (same) values obtained during
the scaling of the training set. By implementing this training/testing approach, we obtain a wealth
of results critical to judging the effectiveness of corrections.
We selected the support vector machine (SVM) algorithm for forecasting purposes. SVM is a robust,

efficient, and widely used classifier, making it an excellent choice for flare prediction. It has also been
shown to perform comparably to decision tree and multilayer perceptron forecasters when utilizing
point-in-time magnetogram data, providing superior performance, while not compromising too much
in terms of complexity and training time (Goodwin et al. 2024). This algorithm aims to develop a
multidimensional hyperplane that maximizes the separation between labels within a feature space. In
the context of this paper, our labels are the flaring/non-flaring events, and our feature space consists
of some subset of the 264 descriptive magnetogram parameters. More often than not, labels are not
linearly separable, requiring a more sophisticated hyperplane to be developed. As a remedy, “kernel
tricks” are frequently applied to remap the feature space into a higher dimension. In this work, we
utilize the popular radial basis function (RBF) kernel, which is dependent on two hyperparameters: C
and γ. Both influence the complexity of the final decision boundary, with C behaving as the penalty
parameter for misclassification and γ as the “width” of the kernel. The larger C and γ are, the more
complicated the resulting decision boundary will be (see Bobra & Couvidat 2015; Goodwin et al. 2024
for more details). The RBF kernel is defined by the following formula: K(x, x′) = exp(−γ||x−x′||2),
where x and x′ are feature vectors (Ding et al. 2021). The kernel, in essence, calculates the Euclidian
distance between two points, mapping the data into a higher dimensional parameter space to better
capture the similarity between points.
To ensure that we achieve clear-cut results on the impacts of projection effects on forecasting, we

structure our feature selection methodology to amplify potential improvements from corrections. We
calculate the Fisher score (F-score) of the 264 descriptive magnetogram parameters for all corrected
and uncorrected training partitions. The F-score is mathematically defined in the following way
(Chen & Lin 2006; Gu et al. 2011):

F (i) =
(x̄+

i − x̄i)
2 + (x̄−

i − x̄i)
2

1
n+−1

∑n+

c=1(x̄
+
c,i − x̄i)2 +

1
n−−1

∑n−

c=1(x̄
−
c,i − x̄i)2

(2)
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where, for a given feature i, x̄+
i is the average value across flaring events, x̄−

i is the average value
across non-flaring events, x̄i is the average value across all events, n

+ is the number of flaring events,
and n− is the number of non-flaring events. Features with large F-scores have flaring and non-flaring
distributions that are highly separated with small standard deviations, meaning they are useful to
include when making predictions. Once we calculate the F-scores within a given partition, we rank
the parameters from highest to lowest depending on their score. However, we only include parameters
that show an improvement to their F-score after corrections were applied. For example, when we
run this methodology on partition 1, we find that SAVNCPP max (the maximum value of the sum of
the absolute value of the net current per polarity) achieves an F-score of 16,920.76 and 17,220.60
for the uncorrected and corrected versions respectively. This means we will include this parameter
in the rankings. However, ABSNJZH max (the max value of the absolute value of the net current
helicity) achieves an F-score of 18,327.77 and 17,591.47 for the uncorrected and corrected versions
respectively. Thus, we do not include this parameter in the rankings. While this may not reflect
the most optimal feature selection methodology, this logic ensures that potential improvements from
corrections do not go unnoticed. In Section 4.2, we explore an additional selection methodology that
includes parameters with no improvement.
After getting our list of improved parameters, we select the 25 with the highest F-score to use

in both our uncorrected and corrected data sets. Previously it was found that for point-in-time
magnetogram forecasting, the number of features (when selected based on F-score) has minimal
impact on the resulting skill scores (Goodwin et al. 2024). Thus, for this study, we settled on 25
features as this balances both performance and training time. This process was repeated for every
new training partition used. Please see Table 3 for the complete list of features selected.
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Partition Uncorrected Corrected

1 C: 10, γ: 0.0001 C: 0.01, γ: 0.01

2 C: 0.01, γ: “scale” C: 0.1, γ: 0.0001

3 C: 100, γ: 0.0001 C: 10, γ: 0.0001

4 C: 0.001, γ: 0.01 C: 0.0001, γ: “scale”

5 C: 0.001, γ: 0.01 C: 0.1, γ: 0.0001

Table 4. The final combination of C and γ for each
training partition for the uncorrected and corrected
data sets. The “scale” parameter for γ utilizes the
inverse of the number of features times the variance
of the feature vector.

Finally, to ensure that each ML model provides reasonable predictive performance, an exhaustive
hyperparameter grid search was applied to all training partitions (both corrected and uncorrected) to
optimize each model’s C and γ hyperparameter. For a given training partition, a model was generated
for every possible combination of the following values for C (0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000)
and γ (“scale”, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000). Where γ = “scale” utilizes the inverse
of the number of features times the variance of the feature vector. For each of these models, the
class weight hyperparameter was set to "balanced" (meaning no under/oversampling techniques
were applied), and the kernel parameter was set to "rbf"1. These models were then trained/tested
using a stratified group three-fold cross-validation. This ensures that within the training and testing
folds, no data overlaps between ARs, and a similar number of flaring and non-flaring events are
present. The model that produced the highest true skill statistic score (see Section 3.4) was then
selected for application to the full training dataset. The final hyperparameters for each training
partition are listed in Table 4.

3.4. Performance Metrics

To analyze the performance of our models, we focus on four different metrics: true positive rate
(TPR), false positive rate (FPR), true skill statistic (TSS), and Heidke skill score (HSS2). They are
each defined mathematically in the following way:

TPR =
TP

TP + FN
, (3)

FPR =
FP

FP + TN
, (4)

TSS =
TP

TP + FN
− FP

FP + TN
, (5)

HSS2 =
2× [(TP × TN)− (FN × FP )]

(TP + FN)× (FN + TN) + (TP + FP )× (FP + TN)
, (6)

1 See https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html for more details.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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where TP are true positives (the number of correctly predicted flaring events), TN are true negatives
(the number of correctly predicted non-flaring events), FP are false positives (the number of non-
flaring events predicted as flaring), and FN are false negatives (the number of flaring events predicted
as non-flaring). The TPR can be thought of as the likelihood of correctly predicting that a flaring
event will occur, while the FPR is the likelihood of predicting that a flaring event will occur when it
does not. Taking the difference of these metrics gives us the TSS score. This metric ranges from -1
to +1, and provides insight into the improvement of a classifier over a random forecast. A score of 0
would be given to a classifier that provides purely positive, negative, or simply random forecasts. A
score of +1 would be given to a classifier that is always right, and a score of -1 would be given to a
classifier that is always wrong. This metric is frequently used in flare forecasting as it is impervious
to class imbalance (Bobra & Couvidat 2015). Lastly, similar to TSS, HSS2 also provides insight
into a model’s performance improvement over a random forecast with scores ranging from -1 to +1.
However, unlike TSS, HSS2 is highly susceptible to class imbalance, with scores decreasing when the
imbalance increases (see Figure 2 in Bobra & Couvidat 2015 and Figure 4 in Ahmadzadeh et al.
2021). Due to the nature of our data set, changes in the number of false positives and true negatives
have a much greater impact on this score. Thus, it’s important to include both TSS and HSS2 when
analyzing performance to see the results holistically. If the reader would like to learn more about
these metrics in the context of flare forecasting, please see Bloomfield et al. (2012), Bobra & Couvidat
(2015), Ahmadzadeh et al. (2021), and Goodwin et al. (2024).

4. RESULTS AND DISCUSSION

In the following sections, we discuss how corrections change forecasts at different heliocentric angles
(Section 4.1), how performance metrics change after corrections are applied (see Section 4.2), and
what are some other potential methods that can be used to address projection effects (see Section
4.3).

4.1. At What Heliocentric Angles Do Corrections “Work”?

Gathering the results across all training/testing partition pairs allows us to evaluate the “good
changes” and “bad changes” made to our forecasts following corrections. In this context, a “good
change” equates to an originally incorrect forecast that was later corrected after removing projection
effects. In contrast, a “bad change” is an originally correct forecast that is now incorrect after
removing projection effects. In Figure 4, we highlight these changes as a function of the mean θ.
Events whose predictions stayed the same between forecasts were not included. It is clear from the
figure that the “bad changes” significantly outnumber the “good changes” near the central meridian.
However, as we move toward the limb, they quickly balance out. Using the intersection of the kernel
density estimation (see Weglarczyk 2018; Waskom 2021 for more details) for each distribution, we find
that this occurs at ≈44.5◦. This suggests two things: first, predicting with corrective data is more
effective near the limb. Second, if we want to maximize performance, an ensemble-like forecaster
must be applied. We suggest using the uncorrected data/classifier for predictions of ARs with θs less
than 44.5◦ and the corrected data/classifier for anything above this angle. This is explored further
in Section 4.2.
In addition to looking at the data as a whole, we can dive into the flaring classes themselves to see

those most affected by corrections. In Figure 5, we plot the same results from Figure 4, however, the
data is now separated into the “good” (left column) and “bad” (right column) changes and color-
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Figure 4. A histogram illustrating how removing projection effects impacts the predictions made at different
average heliocentric angles (θ) across all training/testing partition combinations. Bars are color-coded to
indicate if an incorrect forecast was corrected (Good Change) or if a correct forecast became incorrect (Bad
Change) after projection effects were removed. A solid line representing the kernel density estimation of
each distribution is plotted as well.

coded based on the non-flaring (top row) and flaring (bottom row) events that occur at a specific
mean θ. From this plot, we can see that the M- and X-class flares tend to have more “good” than
“bad” changes after corrections are applied, with the opposite observed for the non-flaring data.
Thus, we can expect to see increases in both the true positive and false positive rates when analyzing
the performance metrics in Section 4.2. However, we expect this increase to be quite minimal. This
is because the changes in our predictions occur for only a small subset of our data. Analyzing the
results across every possible partition combination we find that, on average, “good changes” occur
to the flaring data around 5.1% ± 6.8% of the time, with “bad changes” around 1.3% ± 2.1%. For
the non-flaring data, “good changes” occur around 1.1% ± 1.0% of the time, with “bad changes”
around 2.7% ± 1.4%. Unfortunately, there is no clear explanation for why these changes occur the
way they do. However, we speculate that an improvement in M- and X-class forecasting may be due
to the activity of the selected “benchmark” ARs. We find that around 37% of these ARs produce
at least one M- or X-class flare during their lifetime. Additionally, these ARs make up 51% of the
total number of flaring ARs within SWAN-SF. Since we have such a large representation of flaring
ARs when calibrating our corrections, this could be a reasonable explanation for the phenomenon
observed here.

4.2. Analysis Of Performance Metrics For Each Training-Testing Partition
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Figure 5. A stacked histogram highlighting the “good” (left column) and “bad” (right column) changes to
forecast after removing projection effects as a function of heliocentric angle (θ). These data come from the
collection training/testing partition experiments. Results are color-coded based on flaring class. Flare quiet
(FQ), B-, and C-class events are shown in the top panels. M- and X-class events are shown in the bottom
panels.

Now, let us analyze the changes to performance metrics, specifically TPR, FPR, TSS, and HSS2.
Figure 6 highlights our results. The scatter plots on the left show the scores for each partition
combination, while the box plots on the right summarize the findings across all combinations. Results
are color-coded to indicate whether the classifier was trained/tested with uncorrected data (grey),
corrected data (maroon), or a combination of the two (salmon pink - “44.5◦ Cut”). As was previously
mentioned, corrections appear to be the most useful beyond mean θs of 44.5◦. Thus, the “44.5◦ Cut”
results use the uncorrected forecasts below mean θs of 44.5◦ and the corrected forecasts above this
angle. From the figure, we find that on average, removing projection effects increases both the
TPR and FPR by a few percent. In turn, this produces an enhancement in the TSS scores but a
reduction in the HSS2 scores. Additionally, it is interesting to note that removing projection effects
reduces the overall data spread, with the interquartile range decreasing for both the TPR and FPR.
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Figure 6. The true positive rate (TPR), false positive rate (FPR), true skill statistic (TSS), and Heidke
skill scores (HSS2) for every training and testing partition pair from SWAN-SF (denoted training:testing).
Results are color-coded to indicate whether the classifier was trained and tested with uncorrected data
(green), corrected (coral), or a combination of the two (blue - “44.5° Cut”). The “44.5° Cut” results use the
uncorrected forecasts below heliocentric angles of 44.5° and the corrected forecasts above this angle. Within
the box plots, the triangle represents the data’s mean, while the circles highlight outliers. The outliers
are defined as any value lying 1.5 times the interquartile range above the third quartile or below the first
quartile.

This suggests we generally get more consistent results after corrections, which is beneficial from
a forecaster’s perspective. Looking at the “44.5◦ Cut”, which should maximize our performance
improvements, we see an ever-so-slight increase to both the average TSS and HSS2 scores.
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Figure 7. The TSS and HSS2 scores for each training/testing partition pair for the uncorrected (green)
and corrected (coral) data as a function of heliocentric angle (θ). Results are grouped into 10-degree bins.
The triangles indicate the mean of the data. Outliers have been removed and are not shown in the plot.

We want to emphasize that although we observe changes in our performance metrics when correcting
our data, the hyperparameters we select to train our model can significantly impact these variations.
With only a slight tweak to C and γ, our findings may be completely altered, decreasing the true
positive and false positive rates. This leads to a classifier with somewhat better HSS2 scores but worse
TSS scores after corrections. Nonetheless, the key takeaway should be that correcting for projection
effects has only a small impact on the achieved skill scores. This fact has some potentially profound
consequences.
First, it may suggest that the correction methodology utilized in this work is not sophisticated

enough. If we take a look at how the TSS and HSS2 scores change as a function of θ (Figure 7),
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we see that near the central meridian, at (0, 10], TSS scores hover at ≈ 0.85, but slowly drop to
≈ 0.67 when moving toward the limb. Once corrections are applied, this drop-off still exists, albeit
slightly reduced, suggesting that there is still room for improvements from our corrections. For HSS2

scores, very little change is observed when approaching the limb, suggesting there is not much room
for improvement here. A potential remedy to this problem could be to utilize more fundamental
corrections targeting the magnetograms themselves. For example, Leka et al. (2022) implemented
several advanced spectropolarimetric inversion techniques to remove biases within the data. It would
be interesting to see if applying similar methods to the magnetograms collected for SWAN-SF would
provide greater improvements to forecasting.
Second, and perhaps the least desirable interpretation of this outcome, is that the magnetogram

data itself is limited in its predictive capabilities for flaring events. Given that applying scaling
factors to the data set had minimal effect on the results indicates that classifiers tend to rely on very
generalized associations when making predictions. This suggests that additional data sources, such
as EUV images (Nishizuka et al. 2018; Alipour et al. 2019; Krista & Chih 2021; Leka et al. 2023) and
spectra (Panos & Kleint 2020; Woods et al. 2021; Huwyler & Melchior 2022; Panos et al. 2023) used
in recent forecasting works, need to be implemented in conjunction with magnetograms to progress
the field further.
As previously mentioned, our feature selection methodology is not necessarily optimized for flare

forecasting. Instead, we chose parameters with the greatest potential to maximize performance im-
provements when applying corrections. Nonetheless, we also wanted to investigate how performance
changes when selecting the most effective features for forecasting. Here, we carry out the same fea-
ture ordering procedure mentioned in Section 3.3, however, we now select all of the top 25 ranking
features, not just the ones that show improvements to their F-score. Like before, the uncorrected
dataset uses only the uncorrected features, however, the corrected classifier may now use some com-
bination of corrected and uncorrected parameters. This is most relevant for partitions 1 and 4, where
12 and 10 of the chosen features, respectively, have been corrected. For partitions 2 and 5, only 1
corrected feature is used, and for partition 3, none of the corrected features are used. Our results are
shown in Figure 8. Here, we see a decent discrepancy between the new uncorrected and corrected
TSS scores when using partition 1 for training, however, this is not observed in partition 4 or any
other partitions. This again emphasizes our point that projection effect corrections have little impact
on performance, or at the very least, results seem to be dependent on the partition utilized. Compar-
ing the use of the top 25 features versus the original feature selection methodology, we see that the
performance differences are fairly minimal, with the new methodology only slightly outperforming
the old. This once again reinforces the idea that there may be some serious limitations when utilizing
point-in-time magnetogram data for forecasting.

4.3. How Else Can We Consider Projection Effects?

Aside from directly manipulating the data, we address projection effects in two additional ways.
First, we employ an ensemble-based forecaster dependent on the mean θ of ARs. This involves
training three SVM classifiers on three different θ ranges: [0◦ - 23.33◦], (23.33◦ - 46.66◦], and (46.66◦

- 70.00◦]. Within each θ range, we are minimizing the long-term θ-dependent projection effect trends
within a particular training data set, which, in a way, removes the impacts of these effects without
altering the data itself. However, we are also removing the number of flaring samples used to train an
individual model, which is a huge downside. When making forecasts, the appropriate model is then
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Figure 8. The true positive rate (TPR), false positive rate (FPR), true skill statistic (TSS), and Heidke skill
scores (HSS2) for every training/testing partition combination from SWAN-SF. Results are color-coded to
indicate whether the classifier was trained/tested with uncorrected data with the original 25 features (green),
the corrected data with the original 25 features (coral), the uncorrected data with the top 25 features (blue),
or the corrected data with the top 25 features (purple). See the caption in Figure 6 for the meaning of the
triangles and circles in the box plots.

selected based on the location of the observed AR. For each classifier, we utilize the same feature
selection and hyperparameter tuning methodology mentioned in Section 3.
We also test an approach that retrains the uncorrected classifiers with the mean θ as a feature.

This ensures our model considers the location of the AR when making a forecast. These classifiers
were trained using the same selected features (with the addition of the mean θ) and hyperparameters
originally chosen for the uncorrected data sets.
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Figure 9. The true positive rate (TPR), false positive rate (FPR), true skill statistic (TSS), and Heidke
skill score (HSS2) differences from the uncorrected approach for every training/testing partition combina-
tion from SWAN-SF. Positive values indicate an increase in the score from the baseline of no corrections.
Negative values indicate a decrease from the baseline. Results are color-coded to indicate whether the clas-
sifier was trained/tested with the corrected data (coral), the “44.5° Cut” methodology (blue), the ensemble
methodology (yellow), or the uncorrected data with the mean heliocentric angle (green). The red dashed
line emphasizes no difference from the uncorrected classifier. See the caption in Figure 6 for the meaning of
the triangles and circles in the box plots.

The results for both tests are shown in Figure 9. Here we display a boxplot noting the TPR, FPR,
TSS, and HSS2 deviations from no corrections for the corrected data (maroon), the “44.5° Cut”
methodology (salmon pink), the ensemble methodology (teal), and the uncorrected data plus mean θ
(dark blue). These differences are calculated across the same training/testing partition pairs. Once
again, our alternate methods for considering projection effects have little impact on performance.
The ensemble methodology shows a slight increase in TSS scores with a complimentary decrease in
HSS2. The changes are on the order of only a few percent. Finally, when including the mean θ as
an additional feature to the uncorrected classifier, performance is nearly unchanged across all tested
metrics.

5. SUMMARY

Vector magnetograms suffer from projection effects as active regions migrate toward the limb. This
can cause problems in solar flare forecasting, as active regions may appear stronger or weaker than
they truly are due to artificial long-term θ-dependent trends present within the data. In this work,
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we perform several correction techniques to remedy this problem and study their impact on flare
forecasting. From our analysis, we have made the following conclusions:

1. Correcting for projection effects using a data-centered methodology increases both the true
positive and false positive prediction rates. However, these changes are minimal.

2. Beyond heliocentric angles of 44.5◦, “good” and “bad” changes to our forecasts after corrections
are applied tend to level out. If we would like to maximize performance improvements, a
combination of the corrected and uncorrected classifiers should be used. For data with mean
heliocentric angles below 44.5◦, the classifier trained on uncorrected data should be used. For
heliocentric angles above 44.5◦, the corrected classifier should be used.

3. Classifier-based correction methodologies showed no clear improvements over data-centered
corrections.

4. A more sophisticated correction methodology is likely needed to see greater improvements in
our results.

5. These findings could indicate significant limitations in using magnetogram data for flare fore-
casting. This further emphasizes the need for new data sources and prediction techniques to
continue the development of the space weather forecasting community.

Finally, it could be intriguing to approach this problem from a modeling perspective in the future.
Simulating an active region and feeding it through the Solar Dynamics Observatory Helioseismic and
Magnetic Imager pipeline (similar to Kitiashvili et al. 2015) would allow us to better constrain the
projection effects for each magnetic field parameter. We could force the simulated active regions into
a particular shape, size, and strength, allowing us to generate a more robust selection of “benchmark”
active regions.
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